Conflict Based Search

Sharon, Guni, et al. "Conflict-based search for optimal multi-agent pathfinding." 2015

Jiří Krejčí

Outline

- MAPF and search-based solvers
- the CBS algorithm
- theoretical analysis
- empirical evaluation
- Meta-agent CBS

Multi-agent path finding

Input:

- a directed graph
- k agents, each agent has a start vertex and goal vertex

Task:

A solution to the MAPF problem is a set of non-conflicting paths, one for each agent, where each agent reaches its goal vertex, beginning at start vertex.

Source: Barták, Roman, Ivan Krasicenko, and Jiří Švancara. "Multi-Agent Path Finding on Ozobots."

Classification of MAPF solvers

- optimal
 - reduction-based solvers (SAT, ILP, ASP)
 - search-based solvers (A*, CBS)
- suboptimal
 - search-based (HCA*)
 - rule-based (Push and Swap)

Source: Luna, Ryan J., and Kostas E. Bekris. "Push and swap: Fast cooperative path-finding with completeness guarantees." *Twenty-Second International Joint Conference on Artificial Intelligence*. 2011.

Search-based optimal solvers

• A*

- drawbacks: exponential state space and branching factor in the number of agents
- A* with independence detection
 - reduces the effective number of agents
 - start with singleton groups
 - conflicting groups are merged
 - conflict avoidance tables break ties in favor of states with the fewest conflicts
- M*
 - dynamically change the branching factor based on conflicts
 - expanded nodes generate only one child unless conflict occurs

Search-based optimal solvers II

- Operator decomposition
 - agents are assigned fixed order
 - A* node is expanded one agent at a time, creating intermediate nodes
 - number of regular surplus nodes is reduced
- Enhanced partial expansion (EPEA*)
 - when expanding a node, generates only children with current best f-value estimate
 - o node is then re-inserted into the open list with f-cost of the next best child
- Increasing cost tree search (ICTS)
 - high level increasing cost tree
 - low level goal test

Source: Sharon, Guni, et al. "The increasing cost tree search for optimal multiagent pathfinding." *Artificial intelligence* 195 (2013): 470-495.

CBS

- two-level algorithm
 - high-level search Conflict Tree
 - low-level search single-agent path finding algorithm
- CBS grows a set of constraints and finds paths consistent with these constraints
- conflicts are resolved by adding new constraints

Algorithm 2: High level of CBS (and MA-CBS).

	Input: MAPF instance								
1	$Root.constraints = \emptyset$								
2	Root.solution = find individual paths by the low level()								
3	Root.cost = SIC(Root.solution)								
4	insert Root to OPEN								
5	while OPEN not empty do								
6	$P \leftarrow$ best node from OPEN // lowest solution cost								
7	Validate the paths in <i>P</i> until a conflict occurs.								
8	if P has no conflict then								
9	return <i>P</i> .solution // <i>P</i> is goal								
10	$C \leftarrow \text{first conflict } (a_i, a_j, v, t) \text{ in } P$								
19	foreach agent a _i in C do								
20	$A \leftarrow$ new node								
21	A.constraints \leftarrow P.constraints + (a_i , v , t)								
22	A.solution \leftarrow P.solution								
23	Update A.solution by invoking low $level(a_i)$								
24	A.cost = SIC(A.solution)								
25	if $A.cost < \infty$ // A solution was found then								
26	Insert A to OPEN								
	-								

CBS - low level

- input: agent and set of constraints
- two-dimensional state space time and spatial
- any pathfinding algorithm can be used
 - only needs verification of constraints
 - if violated, state is discarded
- CAT tie-breaking policy possible for low-level A* states

Optimality of CBS

Definition 1: For a given node N in the constraint tree, let CV(N) be the set of all solutions that are: (1) consistent with the set of constraints of N and (2) are also valid (i.e., without conflicts).

Definition 2: We say that node N permits a solution p if it is an element of CV(N).

Lemma 1: The cost of a node N in the CT is a lower bound on minCost(CV(N)).

Lemma 2: For each valid solution p, there exists at least one node N in OPEN such that N permits p.

Consequence: At all times at least one CT node in OPEN permits the optimal solution.

Theorem: CBS returns an optimal solution.

Completeness of CBS

Theorem 2: For every cost C, there is a finite number of CT nodes with cost C. Theorem 3: CBS will return a solution if one exists.

Claim: CBS will not identify an unsolvable problem.

A* vs CBS - bottlenecks

A* vs CBS - open spaces

Source: Sharon, Guni, et al. "Conflict-based search for optimal multi-agent pathfinding."

Empirical evaluation

- algorithms
 - A*
 - ICTS
 - EPEA*
 - CBS
- sum-of-costs function
- SIC heuristic on low-level
- maps
 - 8x8 4-connected grid
 - Dragon Age: Origin

Empirical evaluation - 8x8 grid

Fig. 8. Success rate vs. number of agents 8×8 grid.

Source: Sharon, Guni, et al. "Conflict-based search for optimal multi-agent pathfinding."

Empirical evaluation - 8x8 grid

Table 1

Nodes generated and running time on 8×8 grid.

k'	#Generated nodes				Run-time (ms)					
	Count	A *	EPEA*	CBS(hl)	CBS(II)	A*	EPEA*	ICTS	CBS	p-val
3	100	640	15	10	490	8	0	1	7	0.01
4	100	3965	25	24	1048	207	1	1	14	0.02
5	100	21,851	35	51	2385	3950	3	1	32	0.01
6	89	92,321	39	45	1354	37,398	4	8	20	0.09
7	100	NA	88	117	3994	NA	15	20	60	0.00
8	100	NA	293	266	8644	NA	75	100	148	0.00
9	100	NA	1053	1362	45,585	NA	444	757	879	0.01
10	99	NA	2372	3225	111,571	NA	1340	3152	2429	0.02
11	94	NA	7923	8789	321,704	NA	8157	7318	7712	0.44
12	92	NA	13,178	12,980	451,770	NA	13,787	19,002	12,363	0.36
13	86	NA	14,989	15,803	552,939	NA	18,676	28,381	16,481	0.50
14	83	NA	13,872	21,068	736,278	NA	15,407	35,801	24,441	0.14
15	71	NA	22,967	24,871	826,725	NA	33,569	54,818	30,509	0.45
16	64	NA	26,805	24,602	822,771	NA	41,360	65,578	34,230	0.32
17	49	NA	25,615	17,775	562,575	NA	42,382	75,040	25,653	0.22

Source: Sharon, Guni, et al. "Conflict-based search for optimal multi-agent pathfinding."

Empirical evaluation - DA:O

Fig. 9. The success rate of the different algorithms all running on top of ID for different DAO maps den520d (top), ost003d (middle), brc202d (bottom). Source: Sharon, Guni, et al. "Conflict-based search for optimal multi-agent pathfinding."

Empirical evaluation - DA:O

Fig. 10. DAO maps den520d (left), ost003d (middle), brc202d (right) and their conflicting locations. Source: Sharon, Guni, et al. "Conflict-based search for optimal multi-agent pathfinding."

MA-CBS

- mitigates the worst case strongly coupled agents
- can be adapted to suit the topology
- bounded number of conflicts between any pair of agents
- low-level solver has to be a MAPF solver

MA-CBS - Merging

- if there is a conflict, MA-CBS has two options:
 - o branch
 - merge two conflicting (meta-)agents into a single meta-agent
- merge policy conflict bound oriented merging
 - conflict bound parameter B
 - conflict matrix CM

MA-CBS - Conflicts

- there are three groups of conflicts before merging
 - \circ internal solved by merging
 - external(i)
 - external(j)
- merging external constraints
 - each constraint must apply only to the original agent

Experimental results

Conclusions from experiments

- in dense maps with many agents, low values of B are more efficient
- in maps with large open spaces and few bottlenecks, low values of B are more efficient
- if the MAPF solver is weak (plain A*), high values of B are preferred

"It is not yet fully understood how these different features are related to the performance of each algorithm, a point we intend to research in the future."

Conclusions from experiments

- in dense maps with many agents, low values of B are more efficient
- in maps with large open spaces and few bottlenecks, low values of B are more efficient
- if the MAPF solver is weak (plain A*), high values of B are preferred

"It is not yet fully understood how these different features are related to the performance of each algorithm, a point we intend to research in the future."